Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nano Lett ; 24(1): 370-377, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154104

RESUMO

The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.


Assuntos
Citocromos c , Análise Espectral Raman , Citocromos c/química , Citocromos c/metabolismo , Citocromos c/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membranas Mitocondriais/metabolismo , Apoptose
2.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138165

RESUMO

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Proteínas Reguladoras de Apoptose/uso terapêutico , Células HCT116 , Proteína Supressora de Tumor p53/genética , Survivina/metabolismo , Survivina/farmacologia , Survivina/uso terapêutico , Melaninas/metabolismo , Melaninas/farmacologia , Melaninas/uso terapêutico , Apoptose , Proteína X Associada a bcl-2/genética , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Linhagem Celular Tumoral
3.
BMC Musculoskelet Disord ; 24(1): 894, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978375

RESUMO

BACKGROUND: Steroid-induced avascular necrosis of the femoral head (SANFH) is characterized by osteoblast apoptosis, leading to a loss of bone structure and impaired hip joint function. It has been demonstrated that erythropoietin (EPO) performs a number of biological roles. OBJECTIVE: We examined the effects of EPO on SANFH and its regulation of the STAT1-caspase 3 signaling pathway. METHOD: In vitro, osteoblasts were treated with dexamethasone (Dex) or EPO. We identified the cytotoxicity of EPO by CCK-8, the protein expression of P-STAT1, cleaved-caspase9, cleaved-caspase3, Bcl-2, BAX, and cytochrome c by Western blotting, and evaluated the apoptosis of osteoblasts by flow cytometry. In vivo, we analyzed the protective effect of EPO against SANFH by hematoxylin and eosin (H&E), Immunohistochemical staining, and Micro-computed tomography (CT). RESULTS: In vitro, EPO had no apparent toxic effect on osteoblasts. In Dex-stimulated cells, EPO therapy lowered the protein expression of BAX, cytochrome c, p-STAT1, cleaved-caspase9, and cleaved-caspase3 while increasing the expression of Bcl-2. EPO can alleviate the apoptosis induced by Dex. In vivo, EPO can lower the percentage of empty bone lacunae in SANFH rats. CONCLUSION: The present study shows that EPO conferred beneficial effects in rats with SANFH by inhibiting STAT1-caspase 3 signaling, suggesting that EPO may be developed as a treatment for SANFH.


Assuntos
Eritropoetina , Necrose da Cabeça do Fêmur , Ratos , Animais , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Microtomografia por Raio-X , Apoptose , Transdução de Sinais , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Eritropoetina/farmacologia , Esteroides/efeitos adversos
4.
Vet Comp Oncol ; 21(2): 315-326, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36809669

RESUMO

Toosendanin (TSN) is an active compound from the fruit of Melia toosendan Sieb et Zucc. TSN has been shown to have broad-spectrum anti-tumour activities in human cancers. However, there are still many gaps in the knowledge of TSN on canine mammary tumours (CMT). CMT-U27 cells were used to select the optimal acting time and best concentration of TSN to initiate apoptosis. Cell proliferation, cell colony formation, cell migration and cell invasion were analysed. The expression of apoptosis-related genes and proteins were also detected to explore the mechanism of action of TSN. A murine tumour model was established to detect the effect of TSN treatments. The results showed that TSN decreased cell viability of migration and invasion, altered CMT-U27 cell morphology, and inhibited DNA synthesis. TSN-induced cell apoptosis by upregulating BAX, cleaved caspase-3, cleaved caspase-9, p53 and cytochrome C (cytosolic) protein expression, and downregulating Bcl-2 and cytochrome C (mitochondrial) expression. In addition, TSN increased the mRNA transcription levels of cytochrome C, p53 and BAX, and decreased the mRNA expression of Bcl-2. Furthermore, TSN inhibited the growth of CMT xenografts by regulating the expression of genes and proteins activated by the mitochondrial apoptotic pathway. In conclusion, TSN effectively inhibited cell proliferation, migration and invasion activity, as well as induced CMT-U27 cell apoptosis. The study provides a molecular basis for the development of clinical drugs and other therapeutic options.


Assuntos
Doenças do Cão , Medicamentos de Ervas Chinesas , Neoplasias , Humanos , Animais , Cães , Camundongos , Proteína X Associada a bcl-2/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Proteína Supressora de Tumor p53 , Doenças do Cão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/veterinária , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral
5.
Neurosci Res ; 188: 39-50, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36328305

RESUMO

Spinal cord injury (SCI) is a severe traumatic event, but without any established effective treatment because of the irreversible neuronal death. Here, we investigated the role of miR-222-3p in neuronal apoptosis following SCI. Rat SCI models and neuron hypoxia models were accordingly established. The Bbc3, Bim, Bcl-2, Bax, cleaved-caspase 3, cleaved-caspase 9, Cytochrome c, and miR-222-3p expression levels were examined by Western blotting and real-time reverse transcription polymerase chain reaction (RT-qPCR). The possible association between miR-222-3p and Bbc3/Bim was analyzed by dual-luciferase assay. The neuron viability was assessed by Cell Counting Kit-8 assay and Nissl's staining. Live cell staining was performed to detect the mitochondrial membrane potential and neuronal apoptosis. Rat locomotor function was assessed using the Basso-Beattie-Bresnahan scores. Cytochrome c was outflowed from the mitochondria after SCI or hypoxia treatment, and Bbc3, Bim, Bax, cleaved-caspase 9, and cleaved-caspase 3 were significantly upregulated, while Bcl-2 and miR-222-3p were decreased remarkably. Meanwhile, neuronal cell viability was significantly inhibited. Treatment of miR-222-3p significantly suppressed the Cytochrome c efflux and neuronal apoptosis and improved neuronal cell viability and motor function in SCI rats. Moreover, we found that Bbc3 and Bim were the direct targets of miR-222-3p. Overall, our data suggest that miR-222-3p could alleviate the mitochondrial pathway-mediated apoptosis and motor dysfunction in rats after SCI by targeting Bbc3 and Bim.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspase 9/farmacologia , Proteína X Associada a bcl-2/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , MicroRNAs/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Medula Espinal/metabolismo
6.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(5): 563-572, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36581582

RESUMO

OBJECTIVE: To investigate the effect and mechanism of Pinus massoniana needle extracts (PNE) on oxidative stress injury in cerebral ischemia reperfusion rats. METHODS: The SD male rats were randomly divided into sham group, model control group, Edaravone (3 mg/kg) group, PNE low-dose (200 mg/kg), medium-dose (400 mg/kg) and high-dose (800 mg/kg) groups. PNE was administered by gavage for 7 d before modeling and 6 h after modeling in PNE treatment groups; Edaravone was given by intraperitoneal injection 7 d before modeling and 6 h after reperfusion. The rat model of cerebral ischemia reperfusion injury was established by middle cerebral artery occlusion method. After 24 h of reperfusion, the neurological deficit score, brain water content and cerebral infarction volume of rats were measured. The pathological changes of cerebral cortex and hippocampus were observed by HE staining, and the number of normal nerve cells was counted. The apoptosis rate of neurons in cerebral cortex was detected by TUNEL method. The content of nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) activity in ischemic brain tissue were detected. The protein expression of c-Jun N-terminal kinase (JNK) 3, phosphorylated JNK3 (p-JNK3), B-cell lymphoma protein(Bcl) -2, Bcl-2 associated X (Bax), cytochrome C and caspase-3 in cerebral cortex were detected by Western blotting method. RESULTS: Compared with the model control group, the behavioral score, brain water content and cerebral infarction volume in PNE groups were significantly reduced (all P<0.05), the pathological damage of cerebral cortex and hippocampal CA1 area was significantly alleviated, and the number of normal nerve cells in ischemic cortex and hippocampal CA1 area was increased (all P<0.05). The medium-dose PNE group had the best effect. Compared with the model control group, the apoptosis rate of cortical neurons, the content of NO and MDA in cerebral cortex, the ratio of p-JNK3/JNK3, the expression level of cytochrome C and caspase-3 protein in PNE medium-dose group were significantly reduced , and the activity of SOD, the Bcl-2/Bax ratio were significantly improved (all P<0.05). CONCLUSION: PNE ameliorates brain injury after cerebral ischemia reperfusion in rats, which may be related to scavenging NO and MDA, inhibiting oxidative stress-mediated JNK3/caspase-3 signsal transduction to inhibit neuronal apoptosis.


Assuntos
Isquemia Encefálica , Estresse Oxidativo , Extratos Vegetais , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Proteína X Associada a bcl-2/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Caspase 3/metabolismo , Caspase 3/farmacologia , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Edaravone/farmacologia , Edaravone/uso terapêutico , Infarto da Artéria Cerebral Média , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais , Superóxido Dismutase , Extratos Vegetais/farmacologia , Pinus/química
7.
Artigo em Chinês | MEDLINE | ID: mdl-36229210

RESUMO

Objective: To investigate the effect of arsenic and its main metabolites on the apoptosis of human lung adenocarcinoma cell line A549 and the expression of pro-apoptotic genes Bad and Bik. Methods: In October 2020, A549 cells were recovered and cultured, and the cell viability was detected by the cell counting reagent CCK-8 to determine the concentration and time of sodium arsenite exposure to A549. The study was divided into NaAsO(2) exposure groups and metobol: le expoure groups: the metabolite comparison groups were subdivided into the control group, the monomethylarsinic acid exposure group (60 µmol/L) , and the dimethylarsinic acid exposure group (60 µmol/L) ; sodium arsenite dose groups were subdivided into 4 groups: control group (0) , 20, 40, 60 µmol/L sodium arsenite NaAsO(2). Hoechst 33342/propidium iodide double staining (Ho/PI) was used to observe cell apoptosis and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression levels of Bad and Bik mRNA in cells after exposure. Western blotting was used to detect the protein expressions of Bad, P-Bad-S112, Bik, cleaved Bik and downstream proteins poly ADP-ribose polymerase PARP1 and cytochrome C (Cyt-C) , using spectrophotometry to detect the activity changes of caspase 3, 6, 8, 9. Results: Compared with the control group, the proportion of apoptotic cells in the 20, 40, and 60 µmol/L NaAsO(2) dose groups increased significantly (P<0.01) , and the expression levels of Bad, Bik mRNA, the protein expression levels of Bad, P-Bad-S112, Bik, cleaved Bik, PARP1, Cyt-C were increased (all P<0.05) , and the activities of Caspase 3, 6, 8, and 9 were significantly increased with significantly differences (P<0.05) . Compared with the control group, the expression level of Bad mRNA in the DMA exposure group (1.439±0.173) was increased with a significant difference (P=0.024) , but there was no significant difference in the expression level of Bik mRNA (P=0.788) . There was no significant differences in the expression levels of Bad and Bik mRNA in the poison groups (P=0.085, 0.063) . Compared with the control group, the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to MMA were 0.696±0.023, 0.707±0.014, 0.907±0.031, 1.032±0.016, and there was no significant difference between the two groups (P=0.469, 0.669, 0.859, 0.771) ; the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to DMA were 0.698±0.030, 0.705±0.022, 0.908±0.015, 1.029±0.010, and there was no difference between the two groups (P=0.479, 0.636, 0.803, 0.984) . Conclusion: Sodium arsenite induces the overexpression of Bad and Bik proteins, initiates the negative feedback regulation of phosphorylated Bad and the degradation of Bik, activates the downstream proteins PARP1, Cyt-C and Caspase pathways, and mediates the apoptosis of A549 cells.


Assuntos
Arsênio , Venenos , Células A549 , Adenosina Difosfato Ribose/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose , Arsenitos , Ácido Cacodílico/farmacologia , Caspase 3 , Caspases/farmacologia , Citocromos c/farmacologia , Humanos , Proteínas Mitocondriais/farmacologia , Propídio/farmacologia , RNA Mensageiro , Sincalida/farmacologia , Compostos de Sódio , Proteína de Morte Celular Associada a bcl/metabolismo
8.
Toxins (Basel) ; 14(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36287946

RESUMO

Furanocoumarins, the secondary metabolites of plants, are considered to be natural insecticides and fungicides because they prevent the invasion of plant pathogenic microorganisms and the predation of herbivorous insects. In this study, novel 2-arylfuranocoumarin derivatives were designed to synthesize by condensation, esterification, bromination, and Wittig reaction. The results showed an excellent photosensitive activity of 2-thiophenylfuranocoumarin (I34). Cell Counting Kit-8 detected that I34 could inhibit the proliferation of Spodoptera frugiperda (Sf9) cells in a time- and concentration-dependent manner under ultraviolet A (UV-A) light for 3 min. The inverted microscope revealed that cells treated with I34 swelled, the membrane was ruptured, and apoptotic bodies appeared. The flow cytometry detected that I34 could induce apoptosis of Sf9 cells, increase the level of intracellular reactive oxygen species (ROS), decrease the mitochondrial membrane potential, and block cell cycle arrest in the G2/M phase. Transmission electron microscopy detected cell mitochondrial cristae damage, matrix degradation, and mitochondrial vacuolation. Further enzyme activity detection revealed that the enzyme activities of apoptosis-related proteins caspase-3 and caspase-9 increased significantly (p < 0.05). Finally, Western blotting analysis detected that the phosphorylation level of Akt and Bad and the expression of the apoptosis inhibitor protein Bcl-XL were inhibited, cleaved-PARP and P53 were increased, and cytochrome C was released from the mitochondria into the cytoplasm. Moreover, under UV-A irradiation, I34 promoted the increase in ROS in Sf9 cells, activated the mitochondrial apoptotic signal transduction pathway, and finally, inhibited cell proliferation. Thus, novel furanocoumarins exhibit a potential application prospect as a biochemical pesticide.


Assuntos
Fungicidas Industriais , Furocumarinas , Inseticidas , Praguicidas , Animais , Caspase 9/metabolismo , Caspase 9/farmacologia , Spodoptera/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Caspase 3/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Fungicidas Industriais/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Mitocôndrias , Potencial da Membrana Mitocondrial , Apoptose , Proliferação de Células , Furocumarinas/farmacologia
9.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136543

RESUMO

Aflatoxin B1 (AF) is an unavoidable environmental pollutant that contaminates food, feed, and grains, which seriously threatens human and animal health. Arabic gum (AG) has recently evoked much attention owing to its promising therapeutic potential. Thus, the current study was conducted to look into the possible mechanisms beyond the ameliorative activity of AG against AF-inflicted hepatic injury. Male Wistar rats were assigned into four groups: Control, AG (7.5 g/kg b.w/day, orally), AF (200 µg/kg b.w), and AG plus AF group. AF induced marked liver damage expounded by considerable changes in biochemical profile and histological architecture. The oxidative stress stimulated by AF boosted the production of plasma malondialdehyde (MDA) level along with decreases in the total antioxidant capacity (TAC) level and glutathione peroxidase (GPx) activity. Additionally, AF exposure was associated with down-regulation of the nuclear factor erythroid2-related factor2 (Nrf2) and superoxide dismutase1 (SOD1) protein expression in liver tissue. Apoptotic cascade has also been evoked following AF-exposure, as depicted in overexpression of cytochrome c (Cyto c), cleaved Caspase3 (Cl. Casp3), along with enhanced up-regulation of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-B transcription factor/p65 (NF-κB/p65) mRNA expression levels. Interestingly, the antioxidant and anti-inflammatory contents of AG may reverse the induced oxidative damage, inflammation, and apoptosis in AF-exposed animals.


Assuntos
Poluentes Ambientais , Fator 2 Relacionado a NF-E2 , Aflatoxina B1/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Poluentes Ambientais/metabolismo , Glutationa Peroxidase/metabolismo , Mediadores da Inflamação/metabolismo , Interleucinas/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase-1/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Aging (Albany NY) ; 14(17): 7109-7125, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098742

RESUMO

Acute promyelocytic leukemia (APL) is a specific subtype of acute myelogenous leukemia (AML) characterized by the proliferation of abnormal promyelocytes. Realgar, a Chinese medicine containing arsenic, can be taken orally. Traditional Chinese medicine physicians have employed realgar to treat APL for over a thousand years. Therefore, realgar may be a promising candidate for the treatment of APL. Nevertheless, the underlying mechanism behind realgar therapy is largely unclear. The present study aimed to investigate the effect of realgar on cell death in the APL cell line (NB4) in vitro and to elucidate the underlying mechanism. In this study, after APL cells were treated with different concentrations of realgar, the cell survival rate, apoptotic assay, morphological changes, ATP levels and cell cycle arrest were assessed. The expression of Bcl-2, Bax, Cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) at the mRNA and protein levels were also measured by immunofluorescence, quantitative PCR (qPCR) and Western blotting. We found that realgar could significantly inhibit APL cell proliferation and cell death in a time- and dose-dependent manner. Realgar effectively decreased the ATP levels in APL cells. Realgar also induced APL cell cycle arrest at the S and G2/M phases. Following realgar treatment, the mRNA and protein levels of Bcl-2 were significantly downregulated, whereas the levels of Bax, Cyt-C, and AIF were significantly upregulated. In summary, realgar can induce APL cell death via the Bcl-2/Bax/Cyt-C/AIF signaling pathway, suggesting that realgar may be an effective therapeutic for APL.


Assuntos
Arsênio , Leucemia Promielocítica Aguda , Trifosfato de Adenosina , Apoptose , Fator de Indução de Apoptose/metabolismo , Arsênio/metabolismo , Arsênio/farmacologia , Arsênio/uso terapêutico , Arsenicais , Morte Celular , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Medicina Tradicional Chinesa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Transdução de Sinais , Sulfetos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Environ Res ; 215(Pt 2): 114336, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103928

RESUMO

Nickel nanoparticles are widely used in the industry and may affect the reproductive system. The potential molecular mechanism of exposing the first-trimester trophoblast cell line (HTR-8/SVneo) to nickel nanoparticles remains unclear. Hence, the aim of this study was to investigate the in vitro cytotoxicity of Ni NPs on HTR-8/SVneo cells. HTR-8/SVneo cells were subjected to various concentrations (0, 2.5, 5, 7.5, 10, and 12.5 µg/cm2) of Ni NPs. The toxicity of the Ni NPs was evaluated in HTR-8/SVneo cells by measuring cell viability. The underlying mechanism of nickel nanoparticles toxicity to HTR-8/SVneo cells was determined by measuring the content of intracellular reactive oxygen species, mitochondrial membrane potential, and the rate of cell apoptosis and cell cycle, by measuring adenosine triphosphate levels, intracellular lipid peroxidation malondialdehyde, total superoxide dismutase, and CuZn/Mn-SOD activities, and by determining proteins related to Nrf2, MAPK, and Cytochrome c. Our results showed that the nickel nanoparticles treatment reduced the viability of HTR-8/SVneo cells, while it increased their oxidative stress and lowered their mitochondrial respiratory capacity. Additionally, the nickel nanoparticles treatment induced cell S-phase arrest and apoptosis. These molecular events may be linked to the oxidative stress-Nrf2 pathway/MAPK/Caspase 3 cascade. Thus, nickel nanoparticles exert cytotoxic effects on HTR-8/SVneo cells, which could affect the function of the placenta in human.


Assuntos
Nanopartículas , Trofoblastos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Caspase 3/metabolismo , Caspases/metabolismo , Caspases/farmacologia , Citocromos c/metabolismo , Citocromos c/farmacologia , Feminino , Humanos , Malondialdeído , Nanopartículas Metálicas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Níquel/metabolismo , Níquel/toxicidade , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Trofoblastos/metabolismo
12.
Osteoarthritis Cartilage ; 30(12): 1606-1615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096467

RESUMO

OBJECTIVE: To explore the association between oxidative stress (OS) and Kashin-Beck disease (KBD). METHODS: Terms associated with "KBD" and "OS" were searched in the six different databases up to October 2021. Stata 14.0 was used to pool the means and standard deviations using random-effect or fixed-effect model. The differentially expressed genes in the articular chondrocytes of KBD were identified, the OS related genes were identified by blasting with the GeneCards. The KEGG pathway and gene ontology enrichment analysis was conducted using STRING. RESULTS: The pooled SMD and 95% CI showed hair selenium (-4.59; -6.99, -2.19), blood selenium (-1.65; -2.86, -0.44) and glutathione peroxidases (-4.15; -6.97, -1.33) levels were decreased in KBD, whereas the malondialdehyde (1.12; 0.60, 1.64), nitric oxide (2.29; 1.31, 3.27), nitric oxide synthase (1.07; 0.81, 1.33) and inducible nitric oxide synthase (1.69; 0.62, 2.77) were increased compared with external controls. Meanwhile, hair selenium (-2.71; -5.32, -0.10) and glutathione peroxidases (-1.00; -1.78, -0.22) in KBD were decreased, whereas the malondialdehyde (1.42; 1.04, 1.80), nitric oxide (3.08; 1.93, 4.22) and inducible nitric oxide synthase (0.81; 0.00, 1.61) were elevated compared with internal controls. Enrichment analysis revealed apoptosis was significantly correlated with KBD. The significant biological processes revealed OS induced the release of cytochrome c from mitochondria. The cellular component of OS located in the mitochondrial outer membrane. CONCLUSIONS: The OS levels in KBD were significantly increased because of selenium deficiency, OS mainly occurred in mitochondrial outer membrane, released of cytochrome c from mitochondria, and induced apoptotic signaling pathway.


Assuntos
Doença de Kashin-Bek , Selênio , Humanos , Doença de Kashin-Bek/genética , Doença de Kashin-Bek/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Selênio/metabolismo , Biologia Computacional , Óxido Nítrico/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Estresse Oxidativo , Malondialdeído/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Peroxidases/metabolismo , Peroxidases/farmacologia
13.
J Food Biochem ; 46(10): e14374, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986624

RESUMO

Condensed tannins the polyphenolic compounds that are widespread in plants have been proved to have antitumor potential. Here, we purified the bioactive condensed tannins from leaves of Ulmus pumila L. and explored their structural characteristics, antitumor effect on TFK-1 cholangiocarcinoma cells as well as the related potential mechanism. The UV-Vis, FT-IR spectroscopy, ESI-Full-MS, and thiolysis-HPLC-ESI-MS demonstrated that U. pumila condensed tannins (UCTs) consisted essentially of procyanidins with epicatechin as the main flavan-3-ol extension unit. The UCTs could significantly reduce the survival rate of human cholangiocarcinoma TFK-1, SK-CHA-1, and MZ-CHA-1 cells with the better inhibitory effect on TFK-1 cell proliferation. Flow cytometric assay showed that UCTs affected TFK-1 survival by G2/M phase arrest and inducing apoptosis in a dose-dependent manner. In addition, a total of 6592 differentially expressed genes (DEGs), consisting of 94 upregulated and 6498 downregulated DEGs, were identified between untreated and UCTs-treated TFK-1 cells using RNA-seq technology. Enrichment analysis based on the KEGG database revealed that these DEGs were closely associated with cell cycle and p53 apoptotic signaling pathways. Furthermore, qRT-PCR confirmed that treatment of UCTs to TFK-1 cells caused significant changes in the expression of cyclin E, cdc25 A, cytochrome c, caspase-3, and caspase-8. These results indicated that UCTs exhibited the growth inhibition effect on TFK-1 cells possibly via G2/M cell cycle arrest and activation of caspase-cascade to induce apoptosis, and had potential as an anti-cholangiocarcinoma drug for further development. PRACTICAL APPLICATIONS: Ulmus pumila L. as a valuable tree species has been widely used in fields of medicine and food. Condensed tannins, the polyphenolic compounds widespread in plants, have been proved to have antitumor potential and be safe to normal cells. In this study, the condensed tannins from leaves of U. pumila (UCTs) remarkably suppressed cholangiocarcinoma (CCA) cell viability possibly via G2/M cell cycle arrest and activation of caspase-cascade to induce apoptosis. The results provided evidence for the application of UCTs as a potential therapeutic drug for CCA tumor.


Assuntos
Neoplasias dos Ductos Biliares , Catequina , Colangiocarcinoma , Proantocianidinas , Ulmus , Apoptose , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspases/metabolismo , Caspases/farmacologia , Caspases/uso terapêutico , Catequina/farmacologia , Pontos de Checagem do Ciclo Celular , Divisão Celular , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Ciclina E/metabolismo , Ciclina E/farmacologia , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Humanos , Proantocianidinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Proteína Supressora de Tumor p53 , Ulmus/metabolismo
14.
Metab Syndr Relat Disord ; 20(8): 473-479, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35796694

RESUMO

Background: Hyperuricemia (HU) is a metabolic disease characterized by high uric acid levels in the blood. HU is a risk factor for diabetes, cardiovascular complications, metabolic syndrome, and chronic kidney disease. Purpose: The present study was performed to determine the effect of experimental HU on xanthine oxidase (XO), tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), interleukin-17 (IL-17), cytochrome C, glutathione peroxidase (GPx), caspase-3, and 8-hydroxydeoxyguanosine (8-OHdG) levels in liver tissues of rats. Study Design: Thirty-five, male, Wistar albino-type rats were used for this study. Experimental groups were formed as follows: Group 1: control group; Group 2: potassium oxonate (PO) group; group 3: PO+NAR (naringenin; 2 weeks) group; and Group 4: PO (2 weeks)+NAR (2 weeks) group (total of 4 weeks). Methods: The first group was not given anything other than normal rat food and drinking water. In the second group, a 250 mg/kg intraperitoneal dose of PO was administered for 2 weeks. In the third group, 250 mg/kg intraperitoneal PO (application for 2 weeks) and 100 mg/kg NAR intraperitoneally 1 hr after each application were administered. In the fourth group, intraperitoneal PO administration was applied for 2 weeks, followed by intraperitoneal administration of NAR for 2 weeks (4 weeks in total). At the end of the experimental period, XO, TNF-α, NF-κB, IL-17, cytochrome C, GPx, caspase-3, and 8-OHdG levels were determined in liver tissues. Results: HU increased XO, TNF-α, NF-κB, IL-17, cytochrome C, caspase-3, and 8-OHdG levels in liver tissues. However, both 2 and 4 weeks of NAR supplementation decreased these values, and also NAR supplementation led to an increase in GPx levels in tissues. Conclusions: The results of the study show that increased inflammation, apoptosis, and DNA damage in experimental HU can be prevented by administration of NAR due to inhibition of cytochrome C, NF-κB, caspase-3, and 8-OHdG.


Assuntos
Água Potável , Hiperuricemia , Masculino , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Xantina Oxidase/genética , Xantina Oxidase/metabolismo , Xantina Oxidase/farmacologia , Ácido Úrico , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Água Potável/efeitos adversos , Água Potável/metabolismo , Ratos Wistar , Apoptose , Inflamação/metabolismo , Fígado/metabolismo , Dano ao DNA
15.
Dalton Trans ; 51(25): 9878-9887, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35713093

RESUMO

Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.


Assuntos
Antineoplásicos , Carcinoma , Complexos de Coordenação , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Citocromos c/farmacologia , DNA/química , Fluoroquinolonas , Humanos , Espécies Reativas de Oxigênio/metabolismo
16.
J Immunol Res ; 2022: 3351268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571569

RESUMO

Background: Various natural compounds are effective in cancer prevention and treatment with fewer side effects than conventional radiotherapy and chemotherapy. Considering the uncertainty of the antitumor mechanism of Echinacoside (Ech) and the fact that no study on Ech against non-small cell lung cancer (NSCLC) has been explored previously, this study inquired into the anti-NSCLC effect of Ech and explored its potential mechanisms. Methods: The IC50 to Ech of the NSCLC cells was calculated based on a series of cell viability assays. Different concentrations of Ech were used to treat the cells; the proliferation activity of the cells was evaluated using EdU staining. Mitochondrial membrane potential was detected by JC-1 staining. Levels of cytokines IL-1ß and IL-18 were measured by ELISA. GSH and MDA levels were measured by microplate reader. Expression of cytochrome c, NLRP3, caspase-1, IL-1ß, c-Myc, c-Fos, and Raf/MEK/ERK pathway proteins was evaluated by western blot. Meanwhile, we used xenograft, immunohistochemical staining, and H&E staining to evaluate the pharmacological effects of Ech in mice in vivo. Results: ECH inhibited the proliferation of NSCLC cells. Ech increased the expression of pyroptosis-related proteins. Besides, Ech perturbed the mitochondrial membrane potential with the release of mitochondrial cytochrome c, accompanied by increased oxidative stress. Ech inhibited the phosphorylation levels of Raf/MEK/ERK signaling pathway and subsequently reduced c-myc and c-fos protein expression. In addition, Ech effectively restrained the growth of tumors in vivo. Conclusions: Ech inhibited the Raf/MEK/ERK signaling. Impaired mitochondria activated inflammasome, which in turn led to the pyroptosis of NSCLC cells. These findings can provide some ideas on how to use pyroptosis to treat NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocromos c/metabolismo , Citocromos c/farmacologia , Glicosídeos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Transdução de Sinais
17.
Cardiovasc Toxicol ; 22(8): 727-735, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35606666

RESUMO

Excessive fluoride intake has been reported to cause toxicities to brain, thyroid, kidney, liver and testis tissues. Hesperidin (HSP) is an antioxidant that possesses anti-allergenic, anti-carcinogenic, anti-oxidant and anti-inflammatory activities. Presently, the studies focusing on the toxic effects of sodium fluoride (NaF) on heart tissue at biochemical and molecular level are limited. This study was designed to evaluate the ameliorative effects of HSP on toxicity of NaF on the heart of rats in vivo by observing the alterations in oxidative injury markers (MDA, SOD, CAT, GPX and GSH), pro-inflammatory markers (NF-κB, IL-1ß, TNF-α), expressions of apoptotic genes (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic markers (Beclin 1, LC3A, LC3B), expression levels of PI3K/Akt/mTOR and cardiac markers. HSP treatment attenuated the NaF-induced heart tissue injury by increasing activities of SOD, CAT and GPx and levels of GSH, and suppressing lipid peroxidation. In addition, HSP reversed the changes in expression of apoptotic (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic and inflammatory parameters (Beclin 1, LC3A, LC3B, NF-κB, IL-1ß, TNF-α), in the NaF-induced cardiotoxicity. HSP also modulated the gene expression levels of PI3K/Akt/mTOR signaling pathway and levels of cardiac markers (LDH, CK-MB). Overall, these findings reveal that HSP treatment can be used for the treatment of NaF-induced cardiotoxicity.


Assuntos
Cardiopatias , Hesperidina , Animais , Apoptose , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Cardiotoxicidade , Caspase 3/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/tratamento farmacológico , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , NF-kappa B/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Fluoreto de Sódio/toxicidade , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Acta Trop ; 231: 106440, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35378058

RESUMO

Acanthamoeba spp. are free living amoebae which can give rise to Acanthamoeba keratitis and granulomatous amoebic encephalitis. The surface of Acanthamoeba contains ergosterol which is an important target for drug development against eukaryotic microorganisms. A library of ten functionally diverse quinazolinone derivatives (Q1-Q10) were synthesised to assess their activity against Acanthamoeba castellanii T4. The in-vitro effectiveness of these quinazolinones were investigated against Acanthamoeba castellanii by amoebicidal, excystation, host cell cytopathogenicity, and NADPH-cytochrome c reductase assays. Furthermore, wound healing capability was assessed at different time durations. Maximum inhibition at 50 µg/mL was recorded for compounds Q5, Q6 and Q8, while the compound Q3 did not exhibit amoebicidal effects at tested concentrations. Moreover, LDH assay was conducted to assess the cytotoxicity of quinazolinones against HaCaT cell line. The results of wound healing assay revealed that all compounds are not cytotoxic and are likely to promote wound healing at 10 µg/mL. The excystation assays revealed that these compounds significantly inhibit the morphological transformation of A. castellanii. Compound Q3, Q7 and Q8 elevated the level of NADPH-cytochrome c reductase up to five folds. Sterol 14alpha-demethylase (CYP51) a reference enzyme in ergosterol pathway was used as a potential target for anti-amoebic drugs. In this study using i-Tasser, the protein structure of Acanthamoeba castellanii (AcCYP51) was developed in comparison with Naegleria fowleri protein (NfCYP51) structure. The sequence alignment of both proteins has shown 42.72% identity. Compounds Q1-Q10 were then molecularly docked with the predicted AcCYP51. Out of ten quinazolinones, three compounds (Q3, Q7 and Q8) showed good binding activity within 3 Å of TYR 114. The in-silico study confirmed that these compounds are the inhibitor of CYP51 target site. This report presents several potential lead compounds belonging to quinazolinone derivatives for drug discovery against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Ergosterol/metabolismo , Humanos , NADP/metabolismo , NADP/farmacologia , NADP/uso terapêutico , Oxirredutases/metabolismo , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
19.
Curr Drug Discov Technol ; 19(3): e150322202238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293296

RESUMO

BACKGROUND: Bioactive agents from medicinal and dietary plants have been reported to modulate the mitochondrial membrane permeability transition pores. OBJECTIVE: This study investigated the in vitro effects of C. sinensis (CSE) and M. oleifera (MOE) methanol leaf extracts and their epiphytes (CEP and MEP) on mitochondria permeability transition pores. METHODS: In vitro antioxidant activities of the extracts were determined using standard procedures and quantification of polyphenolic compounds in the extract was done using HPLC-DAD. Opening of the mitochondrial permeability transition pores was assessed as mitochondrial swelling and observed spectrophotometrically as changes in absorbance under succinate-energized conditions. Cytochrome c release was also assessed spectrophotometrically. RESULTS: From the results, CSE, MOE, CEP, and MEP inhibited lipid peroxidation and scavenged nitric oxide and DPPH radicals in a concentration-dependent manner. All extracts exhibited greater ferric reducing antioxidant potential. More so, the results showed that CSE, MOE, CEP, and MEP possess the substantive amount of total flavonoids and total phenolics. CSE and MOE had higher total flavonoids and total phenolic content when compared with the epiphytes. HPLC-DAD results revealed Tangeretin as the most abundant in CSE; Eriocitrin in citrus epiphytes; Moringine in MOE and Flavones in moringa epiphytes. All extracts inhibited calcium-induced opening of the pores in a concentration- dependent manner, with C. sinensis leaf extract (CSE) and moringa epiphyte (MEP) being the most potent in this regard with no significant release of cytochrome c at all concentrations. CONCLUSION: The results suggest that CSE and MEP have bioactive agents, which could be useful in the management of diseases where too much apoptosis occurs characterized by excessive tissue wastage, such as neurodegenerative conditions.


Assuntos
Citrus sinensis , Moringa oleifera , Animais , Antioxidantes/farmacologia , Citocromos c/farmacologia , Flavonoides/farmacologia , Fígado , Poro de Transição de Permeabilidade Mitocondrial , Moringa oleifera/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta , Ratos
20.
J Basic Clin Physiol Pharmacol ; 33(5): 599-605, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33977683

RESUMO

OBJECTIVES: We investigated the effect of apelin-13 on the cellular model of AD, amyloid-ß (Aß) treated SH-SY5Y cells in rats. METHODS: The SH-SY5Y cells were pretreated with different doses of apelin-13 (1, 2.5, 5, and 10 µg/mL), half an hour before adding 50% Aß treatment. After 24 h, cells were evaluated for survival, oxidative stress, mitochondrial calcium release, caspase-3, and cytochrome c levels, compared to control group (beta-actin). Statistical analysis was performed by SPSS 16. RESULTS: Apelin-13 at the dose of 2.5 µg/mL protected against IC50 Aß (p<0.001). Apelin-13 at doses of 1, 2.5, and 5 µg/mL showed protective effects against the reactive oxygen species (ROS) produced by Aß (p<0.001). Apelin-13 at doses of 2.5 and 5 µg/mL reduced calcium release, caspase-3, and cytochrome c (all p<0.001). CONCLUSIONS: Apelin-13 prevented apoptosis, oxidative stress, and mitochondrial toxicity and can be a suitable option for treatment of AD. The appropriate treatment strategy for humans has to be investigated in future studies.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Actinas/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Antioxidantes/farmacologia , Apoptose , Cálcio , Caspase 3 , Linhagem Celular Tumoral , Sobrevivência Celular , Citocromos c/metabolismo , Citocromos c/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Fragmentos de Peptídeos/farmacologia , Ratos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA